字典二二>历史百科>四库百科>对数探源

对数探源

二卷。清李善兰(详见《方圆阐幽》)撰。《对数探源》是李善兰早期数学研究成果,写于1845年,与《方圆阐幽》、《弧矢启秘》一同构成他独创的“尖锥术”奠基性著作。《对数探源》是尖锥术用于对数研究的专著。李善兰认为:“欧罗巴造(对数)表之人,仅能得其数,未能知其理也,间尝深思得之,叹其精微玄妙,且用以造表,较西人简易万倍。然后知言数者之不可不先得夫理也。”他的精微玄妙之理就是尖锥术。《对数探源》卷一为“明理”部分,叙述了十二条命题,首先他指出:“对数之积,诸乘尖锥之合积也。”所谓“对数之积”就是一支双曲线下一段区间内的面积,它等于相应的数的对数。第七条命题说:对于上述之尖锥合积,“若于其直线上作连比例诸率线,各如其线截之,则逐层前率截积与后率之较其积皆同。”这是本书的核心定理,说明了对于任意x,尖锥合积L(x)与h-x之间的对数对应关系,即证明了相当于的积分公式,将对数计算化成了尖锥合积计算。《对数探源》卷二为“详法”,先求二十尖锥“泛积”,李善兰把叫做k-1乘尖锥之“泛积”,他求到,做成二十尖锥注积表,由此表可求出由2到10的各自然数的自然对数。为计算常用对数,李善兰在注积表基础上求得μ=0,43429451,然后又求出由到这19个数做成二十尖锥定积表,“既得二十尖锥定积,便可依此造表”。求得各数之常用对数。在具体使用时,只须计算到“十三乘尖锥”,因为数已很小,故“十四乘以下,俱去不用”。《对数探源》以李善兰独创的尖锥术来处理对数计算,并取得了一些相当于定积分的结果,这在当时西方微积分尚未译成中文的情况下是十分可贵的。《对数探源》的版本有:《则古昔斋算学》本,现藏北京图书馆、苏州图书馆;《古今算学丛书》本;金山钱氏《指海》本。

猜你喜欢

  • 垂训朴语

    一卷。明陈其德(生卒年不详)撰。陈其德,字太华,桐乡(今浙江省桐乡县)人。生平事迹不详。据此书卷中“灾荒纪事”条,称其生于万历初年,而书中之记却作于崇祯十四(1641)、十五(1642)两年,由此断定

  • 济生拔粹方

    十九卷。元杜思敬(生卒年不详)辑。杜思敬,自号宝善老人,铜鞮(今山西省沁县)人。此书辑录了金、元医书十九种。卷一《针经集要》,卷二《云岐子论经络迎随补泻法》,卷三《窦太师流注指要赋》、《针经摘英》(又

  • 大学偶言

    一卷。清张文梵撰。张文梵字风林,又字树声,萧山(今浙江萧山县)人,生卒年不详。康熙五十三年(1714)举人。此书共有四十六条,虽名为《大学偶言》,却多处解说《中庸》,说《大学》者仅数条。书中以为朱子《

  • 经史正音切韵指南

    一卷。元刘鉴编撰。简称《切韵指南》。刘鉴字士明,关中(今陕西一带)人。另著《经史动静字音》,未见传本。刘氏生平不详。据其自序,此书成于元顺帝至元二年(1336年)。自序云:“仆于暇日,因其旧制,以成十

  • 书文音义便考私编

    五卷,附《难字直音》一卷。明李登撰。李登字士龙,自号如真生,上元(今南京市江宁县)人。万历初贡生,官崇仁县教谕,以新野县丞致仕。尚著《摭古遗文》、《六书指南》、《字学正讹》、《正字千文》等。卷首有姚汝

  • 万山楼诗集

    二十四卷。清许虬(约1662年前后在世)撰。许虬,字竹隐,长州(今江苏苏州)人。生卒年均不详。顺治十五年(1658)进士,授思南府知府,转任永州知府。著有《万山楼诗集》。是集凡诗二十四卷。今观是集,其

  • 达斋春秋论

    一卷。清俞樾(详见《周易平议》)撰。该书评论《春秋》史事,总结历史经验,折衷三传,而不主一家之言。全书重点在于议论,而不在于考证。不录经文,有所论说,则标举题目,往往以后世盛衰之迹与《春秋》史事相对照

  • 钝安文

    三卷。傅熊湘(1882-1930)撰。博熊湘生平详见《国文法》条。傅氏曾以文名驰誉湘湖。卒后,由其友人辑遗刊行,即为此文。是文卷一为《湖南图书馆分类目录序》谓“不抉四部,即无以容纳新书,不变通杜威十进

  • 淮海居士长短句校记

    一卷。清朱孝臧(1857-1931)撰。朱孝臧原名祖谋,字古微,号沤尹,又号疆村,浙江归安(今吴兴)人。光绪进士,官礼部侍郎。词风近于吴文英。辛亥革命后多怀恋清室之作。有《疆村语业》。对辑校词籍用力甚

  • 使东日录

    一卷。明董越撰。董越,字尚矩,宁都(今江西宁都县)人,生卒年不详。少孤贫、成化五年(1469)进士,授编修。弘治元年(1488)为朝鲜颁诏正使,累官工部尚书。著有《使东日录》、《朝鲜赋》(已著录)。是